Correction des exercices complémentaires sur les ions

Réponse aux questions de l'exercice 1 :

Réponse à la question 1

L'adolescent Paco présente des carences en ions chlorure et calcium. En effet,

pour l'ion chlorure	la concentration de Paco égale à 55 n'est comprise dans l'intervalle
	des valeurs de références 98 < <106. De plus la concentration de Paco est
	inférieure à la valeur de référence minimale. Il s'agit donc d'une carence.
pour l'ion calcium	la concentration de Paco égale à 69 n'est comprise dans l'intervalle
	des valeurs de références 84 < <102. De plus la concentration de Paco est
	inférieure à la valeur de référence minimale. Il s'agit donc d'une carence.

Réponse à la question 2

Révélateur utilisé lors du test	Solution n°1	Solution n°2	Solution n°3
Soude	apparition d'un précipité rouille =test positif =la solution contient l'ion Fe ³⁺	test négatif	apparition d'un précipité vert =test positif =la solution contient l'ion Fe ²⁺
Nitrate d'argent	test négatif	apparition d'un précipité blanc apparition d'un précipité blanc =test positif =la solution contient l'ion Cl	apparition d'un précipité blanc apparition d'un précipité blanc =test positif =la solution contient l'ion Cl
oxalate d'ammonium	apparition d'un précipité blanc =test positif =la solution contient l'ion Ca ²⁺	apparition d'un précipité blanc =test positif =la solution contient l'ion Ca ²⁺	test négatif

Seule la solution n°2 contient les deux ions calcium et chlorure utiles pour corriger les anomalies constatées lors de l'analyse médicale de Paco.

Réponse à la question 3

Proposition 2 : L'atome de calcium a perdu deux électrons. (La charge 2+ de l'ion calcium indique qu'il y a un excès de charges positives donc un manque de charges négatives correspondant aux électrons)

Réponse à la question 4

		Atome de chlore ³⁵ ₁₇ Cl	Ion chlorure $^{35}_{17}Cl^-$
Constituants du noyau	Nombre de proton	17 car le numéro atomique est égal à 17	17 car le numéro atomique est égal à 17
	Nombre de neutrons	18 donné par le calcul nombre de nucléons — nombre de protons	18 donné par le calcul nombre de nucléons – nombre de protons
Autour du noyau	Nombre d'électrons	18 car l'atome est électriquement neutre. Il possède autant de protons que d'électrons	L'ion n'est pas électriquement neutre. La formule Cl ⁻ montre que l'atome a gagné 1 électron pour former l'ion. 18 + 1 = 19 électrons

Réponse aux questions de l'exercice 2 :

<u>Réponse à la question 1</u> : Le sérum physiologique contient		
• les ions sodium de formule Na ⁺	• les ions chlorure de formule Cl	
Il s'agit de cations. En effet, l'atome sodium a	Il s'agit d'anions. En effet, l'atome de chlore a	
perdu un électron pour former l'ion sodium	gagné un électron pour former l'ion chlorure	
chargé positivement.	chargé négativement.	

Le chlorure ferrique contient			
• les ions fer de formule Fe ³⁺	• les ions chlorure de formule Cl		
Il s'agit de cations. En effet, l'atome de fer a	Il s'agit d'anions. En effet, l'atome de chlore a		
perdu trois électrons pour former l'ion fer	gagné un électron pour former l'ion chlorure		
chargé positivement.	chargé négativement.		

Réponse à la question 2 a : Le sérum physiologique est obtenu par dissolution du chlorure de sodium dans de l'eau. L'eau est électriquement neutre. D'après le document 3, le solide ionique chlorure de sodium est neutre. Par conséquent, il y a autant de charges électriques positives et négatives. Ainsi, il est possible d'affirmer que la charge électrique globale du sérum physiologique est nulle.

<u>Réponse à la question 2 b</u>: L'ion sodium possède une charge électrique positive et l'ion chlorure une charge électrique négative. Par que la charge globale soit nulle, il faut un ion sodium pour un ion chlorure.

<u>Réponse à la question 3 a</u>: Dans le chlorure ferrique, l'anion est l'ion fer qui possède trois charges positives. Le cation est l'ion chlorure qui possède une charge électrique négative. La charge électrique de l'anion est donc trois plus élevée que celle du cation.

Réponse à la question 3 b : D'après la réponse précédente, pour que la solution soit neutre, il faut trois ions chlorure pour un ion fer.

Réponse à la question 3 c :

Formule du composé ionique FeCl₃

Le chiffre 3 écrit en indice indique qu'il y a trois ions chlorure pour un ion fer comme répondu à la question 3b.