Partie du programme : Décrire la constitution de la matière

## **Cours: LE VOLUME ET LA MASSE**

## I) <u>LE VOLUME</u>

## 1) Définition :

Le volume d'un corps est une grandeur qui indique l'espace occupé par le corps.

## 2) Instruments de mesure

Le volume se mesure à l'aide **d'une** <u>éprouvette graduée</u> ou d'une <u>fiole jaugée</u>. Lire les conseils d'utilisation en annexe.

## 3) Calculs

Des formules mathématiques permettent de calculer les volumes de formes régulières comme le cube, la sphère, le cylindre...

<u>Exemple</u>: La formule  $V = c \times c \times c$  permet de calculer le volume d'un cube (c étant la longueur du coté)

## 4) Unités:

Dans le système international, le volume s'exprime en **mètre cube** (m<sup>3</sup>).

Dans la vie quotidienne, **le litre** (L) et ses sous multiples, par exemple le millilitre (mL), sont utilisés.

Lire l'annexe pour les conversions

A retenir:

| 111000000        |                |                                 |  |  |  |  |  |  |
|------------------|----------------|---------------------------------|--|--|--|--|--|--|
| $1m^3 = 1 000 L$ | $1 dm^3 = 1 L$ | $1 \text{ cm}^3 = 1 \text{ mL}$ |  |  |  |  |  |  |
|                  |                |                                 |  |  |  |  |  |  |

## II) <u>LA MASSE</u>

## 1) <u>Définition</u>:

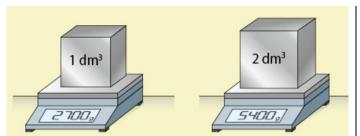
La masse d'un corps est une grandeur qui dépend de la quantité de matière présente dans le corps.

## 2) Instrument de mesure :

La masse se mesure à l'aide d'une balance.

#### 3) <u>Unités</u>:

Dans le système international, la masse s'exprime en kilogramme (kg).


Lire l'annexe pour les conversions

## 4) Confusion:

Il ne faut pas confondre masse et poids. Dans la vie courante, on utilise souvent le mot « poids » à la place du mot « masse ». Or le poids est la force qu'exerce la Terre sur un objet. (L'unité est le Newton noté N)

Partie du programme : Décrire la constitution de la matière

## III) DEUX GRANDEURS PROPORTIONNELLES

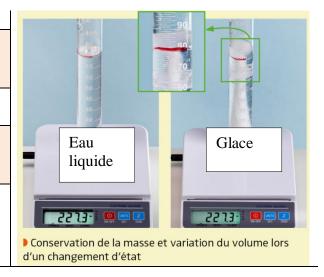


Pour un même corps, si le volume double, alors la masse double aussi.

Le volume et la masse sont proportionnels pour un même corps.

# IV) LE CAS DE L'EAU

## 1) La masse d'un litre


# La masse d'un litre d'eau liquide est d'un kilogramme.

La masse d'un litre d'une autre matière est différente d'un kilogramme.

## 2) Modification du volume en cas de changement d'état

Lors d'un changement d'état, la masse ne varie pas. Par contre, le volume est modifié.

Pour une même masse, l'eau à l'état solide (=glace) occupe un volume plus important que l'eau à l'état liquide.



Partie du programme : Décrire la constitution de la matière

## **ANNEXE**

# Mesurer le volume d'un liquide

Le liquide a tendance à « remonter » le long des parois internes de l'éprouvette. La surface du liquide forme alors un creux appelé **ménisque**.

90 80 70 base du 60 ménisque 50 40 30

Pour la mesure du volume, il faut placer son œil à hauteur de la surface du liquide et choisir le trait de graduation à la base du ménisque.

#### TABLEAUX DE CONVERSIONS

(Conseils: Etre capable de les tracer sur une feuille brouillon puis de SAVOIR LES UTILISER)

# **VOLUME**

| L     | L dL      |            | mL         |  |
|-------|-----------|------------|------------|--|
| litre | décilitre | centilitre | millilitre |  |
|       |           |            |            |  |
|       |           |            |            |  |

$$\frac{Exemples}{1,5 L} : 1,5 L = \dots dL = \dots cL = \dots mL$$

100

$$0.5 \text{ cL} = \dots \text{.....} \text{dL} = \dots \text{.....} \text{L}$$

| $\mathbf{m}^3$ |  |  | dm <sup>3</sup> | cm <sup>3</sup> |  |  |
|----------------|--|--|-----------------|-----------------|--|--|
|                |  |  |                 |                 |  |  |
|                |  |  |                 |                 |  |  |

 $\underline{Exemples}: 2.5 \text{ m}^3 = \dots \text{dm}^3 = \dots \text{cm}^3$  $12,3 \text{ dm}^3 = \dots \text{ m}^3 = \dots \text{ cm}^3$ 

| $m^3$ |  |  | dm <sup>3</sup> |  |   | cm <sup>3</sup> |    |    |
|-------|--|--|-----------------|--|---|-----------------|----|----|
|       |  |  |                 |  | L | dL              | cL | mL |
|       |  |  |                 |  |   |                 |    |    |
|       |  |  |                 |  |   |                 |    |    |

A retenir  $1 \text{ dm}^3 = 1 \text{L}$ 

 $1 \text{ m}^3 = \dots L \quad ; 50 \text{ cm}^3 = \dots \text{mL}$ Exemples:

## **MASSE**

| t | q | kg | hg | dag | g | dg | cg | mg |
|---|---|----|----|-----|---|----|----|----|
|   |   |    |    |     |   |    |    |    |
|   |   |    |    |     |   |    |    |    |

La tonne se note t 1 t = 1 000 kgLe quintal se note q 1 q = 100 kg