
Cours 2: LES ETATS ET LES CHANGEMENTS D'ETATS

I) CHANGEMENT D'ETATS

La matière peut exister sous trois états : solide, liquide, gaz. Lorsqu'elle reçoit ou perd de l'énergie, la matière peut changer d'état.

Comment lire le schéma?

Exemple : La fusion est le passage de l'état solide à l'état liquide.

Précisions:

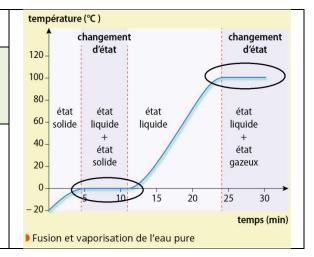
L'évaporation est une vaporisation qui se produit progressivement et naturellement. (Exemple : Par exposition à la chaleur du Soleil, l'eau contenue dans un verre s'évapore. Le niveau baisse progressivement)

L'ébullition est une vaporisation qui se produit rapidement avec l'apparition de bulles de gaz.

II) ETATS DE LA MATIERE

	Solide	Liquide	Gazeux
Etat			
-	Un solide ne prend pas	Un liquide immobile prend la	Un gaz occupe tout l'espace
Forme	la forme du récipient qui le contient. On dit	forme du récipient qui le contient :	disponible :
	qu'il a une forme	contient.	
	propre	il n'a pas de forme propre	il n'a pas de forme propre
	Il est incompressible	Il est incompressible. Sa	Il est compressible.
Volume		surface libre est plane et	
		horizontale.	

III) LES CHANGEMENTS D'ETAT ET LA TEMPERATURE


Lors du changement d'état d'un corps pur*, la température reste constante. Ce n'est pas le cas lors du changement d'état d'un mélange.

* <u>Information</u>: Un corps pur se compose d'une seule espèce chimique (exemple : l'eau déminéralisée)

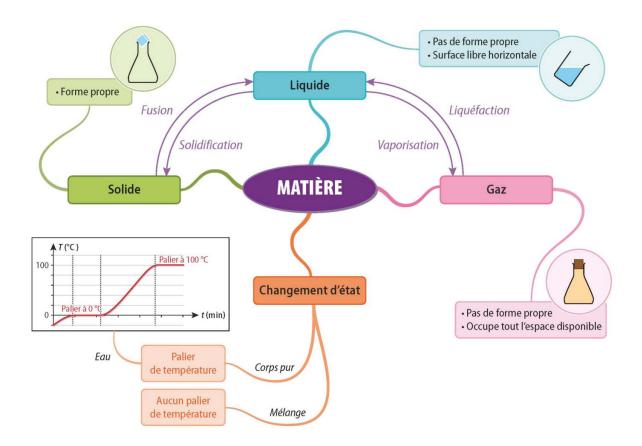
Un corps composé est constitué de plusieurs espèces chimiques (exemple : l'eau salée)

Exemple: Changement d'états de l'eau pure

Pour chaque changement d'état, on observe un <u>palier</u> de température. Il s'agit d'une zone pour laquelle la température reste constante (*Parties horizontales entourées*)

Lors de la fusion ou de la solidification de l'eau, la température reste égale à 0°C* dans les conditions habituelles.

Lors de la vaporisation ou de la liquéfaction de l'eau, la température reste égale à 100° C* dans les conditions habituelles.


(*Ces deux valeurs peuvent changer en fonction de la pression.)

A partir de la température de changement d'état, on peut identifier un corps pur.

(Le tableau montre des exemples de températures de changement d'état pour différents corps purs. Seules les valeurs des températures de changements d'états de l'eau pure sont à connaître.)

Substance	Température de fusion/ solidification (°C)	Température de vaporisation/ liquéfaction (°C)
fer	1 535	2 750
plomb	327	1 749
eau	0	100
alcool	- 117	79
dioxygène	- 218	- 183

CARTE MENTALE

